Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37745605

RESUMO

Alternative splicing (AS) is pervasive in human genes, yet the specific function of most AS events remains unknown. It is widely assumed that the primary function of AS is to diversify the proteome, however AS can also influence gene expression levels by producing transcripts rapidly degraded by nonsense-mediated decay (NMD). Currently, there are no precise estimates for how often the coupling of AS and NMD (AS-NMD) impacts gene expression levels because rapidly degraded NMD transcripts are challenging to capture. To better understand the impact of AS on gene expression levels, we analyzed population-scale genomic data in lymphoblastoid cell lines across eight molecular assays that capture gene regulation before, during, and after transcription and cytoplasmic decay. Sequencing nascent mRNA transcripts revealed frequent aberrant splicing of human introns, which results in remarkably high levels of mRNA transcripts subject to NMD. We estimate that ~15% of all protein-coding transcripts are degraded by NMD, and this estimate increases to nearly half of all transcripts for lowly-expressed genes with many introns. Leveraging genetic variation across cell lines, we find that GWAS trait-associated loci explained by AS are similarly likely to associate with NMD-induced expression level differences as with differences in protein isoform usage. Additionally, we used the splice-switching drug risdiplam to perturb AS at hundreds of genes, finding that ~3/4 of the splicing perturbations induce NMD. Thus, we conclude that AS-NMD substantially impacts the expression levels of most human genes. Our work further suggests that much of the molecular impact of AS is mediated by changes in protein expression levels rather than diversification of the proteome.

2.
Cell Rep ; 38(1): 110179, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986353

RESUMO

G protein-coupled receptors (GPCRs) in intestinal enteroendocrine cells (EECs) respond to nutritional, neural, and microbial cues and modulate the release of gut hormones. Here we show that Gpr17, an orphan GPCR, is co-expressed in glucagon-like peptide-1 (GLP-1)-expressing EECs in human and rodent intestinal epithelium. Acute genetic ablation of Gpr17 in intestinal epithelium improves glucose tolerance and glucose-stimulated insulin secretion (GSIS). Importantly, inducible knockout (iKO) mice and Gpr17 null intestinal organoids respond to glucose or lipid ingestion with increased secretion of GLP-1, but not the other incretin glucose-dependent insulinotropic polypeptide (GIP). In an in vitro EEC model, overexpression or agonism of Gpr17 reduces voltage-gated calcium currents and decreases cyclic AMP (cAMP) production, and these are two critical factors regulating GLP-1 secretion. Together, our work shows that intestinal Gpr17 signaling functions as an inhibitory pathway for GLP-1 secretion in EECs, suggesting intestinal GPR17 is a potential target for diabetes and obesity intervention.


Assuntos
Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Mucosa Intestinal/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Animais , Glicemia/análise , Cálcio/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Diabetes Mellitus/patologia , Feminino , Polipeptídeo Inibidor Gástrico/metabolismo , Teste de Tolerância a Glucose , Células HEK293 , Células HeLa , Humanos , Incretinas/metabolismo , Insulina/metabolismo , Secreção de Insulina/fisiologia , Mucosa Intestinal/citologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/patologia , Receptores dos Hormônios Gastrointestinais/metabolismo
3.
J Biol Chem ; 298(1): 101431, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801552

RESUMO

Insulin resistance impairs postprandial glucose uptake through glucose transporter type 4 (GLUT4) and is the primary defect preceding type 2 diabetes. We previously generated an insulin-resistant mouse model with human GLUT4 promoter-driven insulin receptor knockout (GIRKO) in the muscle, adipose, and neuronal subpopulations. However, the rate of diabetes in GIRKO mice remained low prior to 6 months of age on normal chow diet (NCD), suggesting that additional factors/mechanisms are responsible for adverse metabolic effects driving the ultimate progression of overt diabetes. In this study, we characterized the metabolic phenotypes of the adult GIRKO mice acutely switched to high-fat diet (HFD) feeding in order to identify additional metabolic challenges required for disease progression. Distinct from other diet-induced obesity (DIO) and genetic models (e.g., db/db mice), GIRKO mice remained leaner on HFD feeding, but developed other cardinal features of insulin resistance syndrome. GIRKO mice rapidly developed hyperglycemia despite compensatory increases in ß-cell mass and hyperinsulinemia. Furthermore, GIRKO mice also had impaired oral glucose tolerance and a limited glucose-lowering benefit from exendin-4, suggesting that the blunted incretin effect contributed to hyperglycemia. Secondly, GIRKO mice manifested severe dyslipidemia while on HFD due to elevated hepatic lipid secretion, serum triglyceride concentration, and lipid droplet accumulation in hepatocytes. Thirdly, GIRKO mice on HFD had increased inflammatory cues in the gut, which were associated with the HFD-induced microbiome alterations and increased serum lipopolysaccharide (LPS). In conclusion, our studies identified important gene/diet interactions contributing to diabetes progression, which might be leveraged to develop more efficacious therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Intolerância à Glucose , Transportador de Glucose Tipo 4 , Hiperglicemia , Resistência à Insulina , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Transportador de Glucose Tipo 4/biossíntese , Transportador de Glucose Tipo 4/metabolismo , Hiperglicemia/sangue , Hiperglicemia/etiologia , Hiperglicemia/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Nutrients ; 12(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003412

RESUMO

High-fat diet (HFD) has been shown to accelerate Alzheimer's disease (AD) pathology, but the exact molecular and cellular mechanisms remain incompletely understood. Moreover, it is unknown whether AD mice are more susceptible to HFD-induced metabolic dysfunctions. To address these questions, we used 5xFAD mice as an Alzheimer's disease model to study the physiological and molecular underpinning between HFD-induced metabolic defects and AD pathology. We systematically profiled the metabolic parameters, the gut microbiome composition, and hippocampal gene expression in 5xFAD and wild type (WT) mice fed normal chow diet and HFD. HFD feeding impaired energy metabolism in male 5xFAD mice, leading to increased locomotor activity, energy expenditure, and food intake. 5xFAD mice on HFD had elevated circulating lipids and worsened glucose intolerance. HFD caused profound changes in gut microbiome compositions, though no difference between genotype was detected. We measured hippocampal mRNAs related to AD neuropathology and neuroinflammation and showed that HFD elevated the expression of apoptotic, microglial, and amyloidogenic genes in 5xFAD mice. Pathway analysis revealed that differentially regulated genes were involved in insulin signaling, cytokine signaling, cellular stress, and neurotransmission. Collectively, our results showed that 5xFAD mice were more susceptible to HFD-induced metabolic dysregulation and suggest that targeting metabolic dysfunctions can ameliorate AD symptoms via effects on insulin signaling and neuroinflammation in the hippocampus.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação Neurogênica/metabolismo , Transdução de Sinais/fisiologia , Doença de Alzheimer/etiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Microbioma Gastrointestinal/genética , Expressão Gênica , Genótipo , Intolerância à Glucose/sangue , Intolerância à Glucose/etiologia , Hipocampo/metabolismo , Inflamação , Insulina/metabolismo , Lipídeos/sangue , Locomoção/fisiologia , Masculino , Camundongos , Microglia/metabolismo , Inflamação Neurogênica/etiologia , RNA Mensageiro/metabolismo , Fatores de Risco , Transmissão Sináptica/genética
5.
Nutr Diabetes ; 9(1): 29, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31611548

RESUMO

BACKGROUND: Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) control energy homeostasis by sensing hormonal and nutrient cues and activating secondary melanocortin sensing neurons. We identified the expression of a G protein-coupled receptor, Gpr17, in the ARH and hypothesized that it contributes to the regulatory function of POMC neurons on metabolism. METHODS: In order to test this hypothesis, we generated POMC neuron-specific Gpr17 knockout (PGKO) mice and determined their energy and glucose metabolic phenotypes on normal chow diet (NCD) and high-fat diet (HFD). RESULTS: Adult PGKO mice on NCD displayed comparable body composition and metabolic features measured by indirect calorimetry. By contrast, PGKO mice on HFD demonstrated a sexually dimorphic phenotype with female PGKO mice displaying better metabolic homeostasis. Notably, female PGKO mice gained significantly less body weight and adiposity (p < 0.01), which was associated with increased energy expenditure, locomotor activity, and respiratory quotient, while males did not have an overt change in energy homeostasis. Though PGKO mice of both sexes had comparable glucose and insulin tolerance, detailed analyses of liver gene expression and serum metabolites indicate that PGKO mice could have reduced gluconeogenesis and increased lipid utilization on HFD. To elucidate the central-based mechanism(s) underlying the better-preserved energy and glucose homeostasis in PGKO mice on HFD, we examined the electrophysiological properties of POMC neurons and found Gpr17 deficiency led to increased spontaneous action potentials. Moreover, PGKO mice, especially female knockouts, had increased POMC-derived alpha-melanocyte stimulating hormone and beta-endorphin despite a comparable level of prohormone POMC in their hypothalamic extracts. CONCLUSIONS: Gpr17 deficiency in POMC neurons protects metabolic homeostasis in a sex-dependent manner during dietary and aging challenges, suggesting that Gpr17 could be an effective anti-obesity target in specific populations with poor metabolic control.


Assuntos
Peso Corporal/fisiologia , Encéfalo/metabolismo , Resistência à Insulina/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Envelhecimento/metabolismo , Animais , Dieta Hiperlipídica , Metabolismo Energético/fisiologia , Feminino , Homeostase/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Fatores Sexuais
6.
Endocrinology ; 160(9): 2038-2048, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199472

RESUMO

Insulin signaling in the central nervous system influences satiety, counterregulation, and peripheral insulin sensitivity. Neurons expressing the Glut4 glucose transporter influence peripheral insulin sensitivity. Here, we analyzed the effects of insulin receptor (IR) signaling in hypothalamic Glut4 neurons on glucose sensing as well as leptin and amino acid signaling. By measuring electrophysiological responses to low glucose conditions, we found that the majority of Glut4 neurons in the ventromedial hypothalamus (VMH) were glucose excitatory neurons. GLUT4-Cre-driven insulin receptor knockout mice with a combined ablation of IR in Glut4-expressing tissues showed increased counterregulatory response to either 2-deoxyglucose-induced neuroglycopenia or systemic insulin-induced hypoglycemia. The latter response was recapitulated in mice with decreased VMH IR expression, suggesting that the effects on the counterregulatory response are likely mediated through the deletion of IRs on Glut4 neurons in the VMH. Using immunohistochemistry in fluorescently labeled hypothalamic Glut4 neurons, we showed that IR signaling promoted hypothalamic cellular signaling responses to the rise of insulin, leptin, and amino acids associated with feeding. We concluded that hypothalamic Glut4 neurons modulated the glucagon counterregulatory response and that IR signaling in Glut4 neurons was required to integrate hormonal and nutritional cues for the regulation of glucose metabolism.


Assuntos
Transportador de Glucose Tipo 4/fisiologia , Receptor de Insulina/fisiologia , Núcleo Hipotalâmico Ventromedial/fisiologia , Animais , Glucagon/sangue , Glucose/metabolismo , Hipoglicemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
JBMR Plus ; 3(4): e10084, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31044183

RESUMO

Glucocorticoids (GC) are commonly used for the treatment of a wide variety of autoimmune, pulmonary, gastrointestinal, and malignancy conditions. One of the devastating side effects of GC use is osteoporotic fractures, particularly in the spine and hip. Bisphosphonates (BP) are the most commonly prescribed pharmacological agents for the prevention and treatment of GC-induced osteoporosis (GIO). However, GIO is marked by reduced bone formation and BP serves mainly to decrease bone resorption. The WNT signaling pathway plays a major role in bone and mineral homeostasis. Previously, we demonstrated that overexpression of WNT16 in mice led to higher bone mineral density and improved bone microarchitecture and strength. We hypothesized that WNT16 overexpression would prevent bone loss due to glucocorticoid treatment in mice. To test our hypothesis, we treated adult wild-type and WNT16-transgenic mice with vehicle and GC (prednisolone; 2.1 mg/kg body weight) via slow-release pellets for 28 days. We measured bone mass and microarchitecture by dual-energy X-ray absorptiometry (DXA) and micro-CT, and performed gene expression and serum biochemical analysis. We found that GC treatment compared with the vehicle significantly decreased femoral areal bone mineral density (aBMD), bone mineral content (BMC), and cortical bone area and thickness in both wild-type and transgenic female mice. In contrast, the trabecular bone parameters at distal femur were not significantly changed by GC treatment in male and female mice for both genotypes. Further, we observed significantly lower level of serum P1NP and a tendency of higher level of serum TRAP in wild-type and transgenic mice due to GC treatment in both sexes. Gene expression analysis showed lower mRNA levels of Wnt16, Opg, and Opg/Rankl ratio in GC-treated female mice for both genotypes compared with the sex-matched vehicle-treated mice. These data suggest that although WNT16 overexpression resulted in higher baseline bone mineral density and bone volume per trabecular volume (BV/TV) in the transgenic mice, this was insufficient to prevent bone loss in mice due to glucocorticoid treatment.

8.
Int J Biol Macromol ; 120(Pt A): 896-905, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30171957

RESUMO

Here we report immobilization of glucose oxidase (GOx) on magnetic silica (Fe3O4-SiO2) and alumina (Fe3O4-Al2O3) functionalized with amino groups using glutaraldehyde as a linker. Magnetic support based biocatalysts demonstrate high catalytic activity in d-glucose oxidation to D-gluconic acid at pH 5-7.5 and temperature of 30-50 °C with the best activities of 95% and 91% for magnetic silica and alumina, respectively. A comparison of magnetic and non-magnetic alumina and silica shows a significant enhancement of the relative catalytic activity for magnetic supports, while the silica based biocatalysts show a higher activity than the biocatalysts based on alumina. A noticeably higher activity of GOx immobilized on magnetic supports is explained by synergy of the GOx inherent activity and enzyme-like activity of iron oxide nanoparticles, while the enhancement with silica based catalysts is most likely due to a larger pore size and stronger Brønsted acid sites. Excellent relative activity of Fe3O4-SiO2-GOx (95% of native GOx) in a tolerant pH and temperature range as well as high stability in a repeated use (6% relative activity loss after five catalytic cycles) makes this catalyst promising for practical applications.


Assuntos
Enzimas Imobilizadas/química , Enzimas/química , Glucose Oxidase/química , Glucose/química , Óxido de Alumínio/química , Catálise , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos , Oxirredução , Dióxido de Silício/química
9.
Arterioscler Thromb Vasc Biol ; 38(4): e48-e57, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29371245

RESUMO

OBJECTIVE: Arterial calcification and stiffening increase the risk of reconstruction failure, amputation, and mortality in patients with peripheral arterial disease, but underlying mechanisms and prevalence are unclear. APPROACH AND RESULTS: Fresh human femoropopliteal arteries were obtained from n=431 tissue donors aged 13 to 82 years (mean age, 53±16 years) recording the in situ longitudinal prestretch. Arterial diameter, wall thickness, and opening angles were measured optically, and stiffness was assessed using planar biaxial extension and constitutive modeling. Histological features were determined using transverse and longitudinal Verhoeff-Van Gieson and Alizarin stains. Medial calcification was quantified using a 7-stage grading scale and was correlated with structural and mechanical properties and clinical characteristics. Almost half (46%) of the femoropopliteal arteries had identifiable medial calcification. Older arteries were more calcified, but small calcium deposits were observed in arteries as young as 18 years old. After controlling for age, positive correlations were observed between calcification, diabetes mellitus, dyslipidemia, and body mass index. Tobacco use demonstrated a negative correlation. Calcified arteries were larger in diameter but had smaller circumferential opening angles. They were also stiffer longitudinally and circumferentially and had thinner tunica media and external elastic lamina with more discontinuous elastic fibers. CONCLUSIONS: Although aging is the dominant risk factor for femoropopliteal artery calcification and stiffening, these processes seem to be linked and can begin at a young age. Calcification is associated with the presence of certain risk factors and with elastic fiber degradation, suggesting overlapping molecular pathways that require further investigation.


Assuntos
Artéria Femoral/fisiopatologia , Doença Arterial Periférica/epidemiologia , Doença Arterial Periférica/fisiopatologia , Artéria Poplítea/fisiopatologia , Calcificação Vascular/epidemiologia , Calcificação Vascular/fisiopatologia , Rigidez Vascular , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Bases de Dados Factuais , Tecido Elástico/patologia , Tecido Elástico/fisiopatologia , Feminino , Artéria Femoral/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Nebraska/epidemiologia , Doença Arterial Periférica/diagnóstico , Artéria Poplítea/patologia , Prevalência , Fatores de Risco , Índice de Gravidade de Doença , Calcificação Vascular/diagnóstico , Remodelação Vascular , Adulto Jovem
10.
ACS Omega ; 3(11): 14717-14725, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458148

RESUMO

This paper reports the development of robust Pd- and Ru-containing magnetically recoverable catalysts in a one-pot procedure using commercially available, branched polyethyleneimine (PEI) as capping and reducing agent. For both catalytic metals, ∼3 nm nanoparticles (NPs) are stabilized in the PEI shell of magnetite NPs, whose aggregation allows for prompt magnetic separation. The catalyst properties were studied in a model reaction of 4-nitrophenol hydrogenation to 4-aminophenol with NaBH4. A similar catalytic NP size allowed us to decouple the NP size impact on the catalytic performance from other parameters and to follow the influence of the catalytic metal type and amount as well as the PEI amount on the catalytic activity. The best catalytic performances, the 1.2 min-1 rate constant and the 433.2 min-1 turnover frequency, are obtained for the Ru-containing catalyst. This is discussed in terms of stability of Ru hydride facilitating the surface-hydrogen transfer and the presence of Ru4+ species on the Ru NP surface facilitating the nitro group adsorption, both leading to an increased catalyst efficiency. High catalytic activity as well as the high stability of the catalyst performance in five consecutive catalytic cycles after magnetic separation makes this catalyst promising for nitroarene hydrogenation reactions.

11.
Bone ; 94: 34-41, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27746321

RESUMO

Autosomal dominant osteopetrosis type II (ADO2) is a heritable osteosclerotic bone disorder due to dysfunctional osteoclast activity. ADO2 is caused by missense mutations in the chloride channel 7 (CLCN7) gene characterized by osteosclerosis with multiple fractures. ADO2 can result in osteomyelitis, visual loss and bone marrow failure. Currently, there is no cure for ADO2, and until recently no appropriate animal model of ADO2 existed to understand better the pathogenesis of this disease and to test new therapies. Therefore, we created ADO2 knock-in mouse model with a G213R (human homolog of G215R) missense mutation in the Clcn7 gene on 129S1 background, and demonstrated that this mouse model phenocopies human ADO2. As ADO2 gives rise to incomplete penetrance (66%) in human and marked phenotypic variability is observed among patients with the same mutation, we hypothesized that the severity and penetrance of ADO2 will also vary in mouse models on different genetic backgrounds. To test this, we created ADO2 mouse models in DBA/D2, C57BL/6J/B6 and Balb/c strains, and compared bone phenotypes and performed serum biochemical analysis between strain- and age-matched wild-type (WT) and ADO2 mice. At 3months of age, whole body aBMD was higher (4-7% in male; 1-5% in female) in the ADO2 mice compared to their wild-type littermates. In addition, ADO2 male mice on 129 background displayed highest percent increase of BV/TV (106%), followed by D2 (92%), B6 (46%), and Balb/c (33%) compared to strain-matched wild-type mice. We observed similar differences for BV/TV between ADO2 and wild-type mice on different genetic backgrounds in female: 129 (96%)>D2 (73%)>Balb/c (39%) and B6 (36%). Serum calcium, phosphorus, alkaline phosphatase and P1NP levels were similar in the WT and ADO2 mice on all genetic backgrounds but TRAP was higher (76% to 220% in male; 33-95% in female) and CTX/TRAP ratio was lower (39-65% in male and 3-41% in female) in the ADO2 mice compared to their strain-matched wild-type littermates. We also found that young (3months) ADO2 mice on 129S1 background exhibited 200% higher trabecular BV/TV whereas old (18months) ADO2 mice displayed 400-700% higher BV/TV compared to their age-matched wild-type controls. In summary, phenotypic severity in ADO2 mice varied markedly on different genetic backgrounds (129>D2>Balb/c>B6) and became more pronounced with age, which resembles the wide variations in phenotype observed in ADO2 patients. These mouse models will help us to identify genes/factors that influence severity and penetrance of ADO2, and test innovative therapies to treat this disease.


Assuntos
Osteopetrose/genética , Osteopetrose/patologia , Animais , Biomarcadores/sangue , Peso Corporal , Densidade Óssea , Reabsorção Óssea/sangue , Reabsorção Óssea/complicações , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/patologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Modelos Animais de Doenças , Feminino , Fêmur/diagnóstico por imagem , Fêmur/patologia , Humanos , Masculino , Camundongos , Osteopetrose/sangue , Osteopetrose/complicações , Fenótipo , Microtomografia por Raio-X
12.
Calcif Tissue Int ; 100(4): 361-373, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28013361

RESUMO

Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.


Assuntos
Densidade Óssea/fisiologia , Osteócitos/metabolismo , Proteínas Wnt/metabolismo , Animais , Densidade Óssea/genética , Osso e Ossos/metabolismo , Feminino , Fêmur/metabolismo , Fêmur/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Proteínas Wnt/genética
13.
Endocrinology ; 157(2): 722-36, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26584014

RESUMO

Previous genome-wide association studies have identified common variants in genes associated with bone mineral density (BMD) and risk of fracture. Recently, we identified single nucleotide polymorphisms (SNPs) in Wingless-type mouse mammary tumor virus integration site (WNT)16 that were associated with peak BMD in premenopausal women. To further identify the role of Wnt16 in bone mass regulation, we created transgenic (TG) mice overexpressing human WNT16 in osteoblasts. We compared bone phenotypes, serum biochemistry, gene expression, and dynamic bone histomorphometry between TG and wild-type (WT) mice. Compared with WT mice, WNT16-TG mice exhibited significantly higher whole-body areal BMD and bone mineral content (BMC) at 6 and 12 weeks of age in both male and female. Microcomputer tomography analysis of trabecular bone at distal femur revealed 3-fold (male) and 14-fold (female) higher bone volume/tissue volume (BV/TV), and significantly higher trabecular number and trabecular thickness but lower trabecular separation in TG mice compared with WT littermates in both sexes. The cortical bone at femur midshaft also displayed significantly greater bone area/total area and cortical thickness in the TG mice in both sexes. Serum biochemistry analysis showed that male TG mice had higher serum alkaline phosphatase, osteocalcin, osteoprotegerin (OPG), OPG to receptor activator of NF-kB ligand (tumor necrosis family ligand superfamily, number 11; RANKL) ratio as compared with WT mice. Also, lower carboxy-terminal collagen cross-link (CTX) to tartrate-resistant acid phosphatase 5, isoform b (TRAPc5b) ratio was observed in TG mice compared with WT littermates in both male and female. Histomorphometry data demonstrated that both male and female TG mice had significantly higher cortical and trabecular mineralizing surface/bone surface and bone formation rate compared with sex-matched WT mice. Gene expression analysis demonstrated higher expression of Alp, OC, Opg, and Opg to Rankl ratio in bone tissue in the TG mice compared with WT littermates. Our data indicate that WNT16 is critical for positive regulation of both cortical and trabecular bone mass and structure and that this molecule might be targeted for therapeutic interventions to treat osteoporosis.


Assuntos
Densidade Óssea/genética , Fêmur/diagnóstico por imagem , Osteoblastos/metabolismo , Osteogênese/genética , RNA Mensageiro/metabolismo , Proteínas Wnt/genética , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Osso e Ossos/diagnóstico por imagem , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Feminino , Fêmur/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoporose , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fosfatase Ácida Resistente a Tartarato , Via de Sinalização Wnt , Microtomografia por Raio-X
14.
J Bone Miner Res ; 30(11): 2005-13, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25943708

RESUMO

ADO2 is a heritable osteosclerotic disorder that usually results from heterozygous missense dominant negative mutations in the chloride channel 7 gene (CLCN7). ADO2 is characterized by a wide range of features and severity, including multiple fractures, impaired vision due to secondary bony overgrowth and/or the lack of the optical canal enlargement with growth, and osteonecrosis/osteomyelitis. The disease is presently incurable, although anecdotal evidence suggests that calcitriol and interferon gamma-1b (IFN-G) may have some beneficial effects. To identify the role of these drugs for the treatment of ADO2, we utilized a knock-in (G213R mutation in Clcn7) ADO2 mouse model that resembles the human disease. Six-week-old ADO2 heterozygous mice were administered vehicle (PBS) or calcitriol or IFN-G 5 times per week for 8 weeks. We determined bone phenotypes using DXA and µCT, and analyzed serum biochemistry and bone resorption markers. ADO2 mice treated with all doses of IFN-G significantly (p<0.05) attenuated the increase of whole body aBMD and distal femur BV/TV gain in both male and female compared to the vehicle group. In contrast, mice treated with low and medium doses of calcitriol showed a trend of higher aBMD and BV/TV whereas high dose calcitriol significantly (p<0.05) increased bone mass compared to the vehicle group. The calcium and phosphorus levels did not differ between vehicle and IFN-G or calcitriol treated mice; however, we detected significantly (p<0.05) elevated levels of CTX/TRAP5b ratio in IFN-G treated mice. Our findings indicate that while IFN-G at all doses substantially improved the osteopetrotic phenotypes in ADO2 heterozygous mice, calcitriol treatment at any dose did not improve the phenotype and at high dose further increased bone mass. Thus, use of high dose calcitriol therapy in ADO2 patients merits serious reconsideration. Importantly, our data support the prospect of a clinical trial of IFN-G in ADO2 patients.


Assuntos
Calcitriol/uso terapêutico , Interferon gama/uso terapêutico , Osteopetrose/patologia , Absorciometria de Fóton , Animais , Biomarcadores/sangue , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Cálcio/sangue , Cálcio/urina , Relação Dose-Resposta a Droga , Feminino , Interferon gama/sangue , Masculino , Camundongos , Osteopetrose/sangue , Osteopetrose/diagnóstico por imagem , Osteopetrose/fisiopatologia , Osteopetrose/urina , Fenótipo , Fosfatos/sangue , Proteínas Recombinantes/sangue , Proteínas Recombinantes/uso terapêutico , Microtomografia por Raio-X
15.
J Inflamm Res ; 8: 49-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25709492

RESUMO

PURPOSE: Eggshell membrane (ESM) has been shown to contain naturally occurring bioactive components, and biological activities such as reducing proinflammatory cytokines, liver fibrosis, and joint pain in osteoarthritis sufferers have also been reported for ESM matrix as a whole. Nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) is a signaling protein found in the cytoplasm of nearly all human and animal cell types and is a primary regulator of immune function. The studies reported herein were designed to investigate the possible role that NF-κB activity might play in the reported biological activities of ESM. METHODS: Three ESM hydrolyzates produced via fermentation, enzymatic, or chemical hydrolysis were evaluated in vitro in either human peripheral blood mononuclear cell or THP-1 (human leukemic monocyte) cell cultures for NF-κB activity following 4-hour exposure. The hydrolyzates were compared with untreated control cells or cells incubated with lipopolysaccharide or ascorbic acid. The source of ESM activity was also evaluated. RESULTS: NF-κB levels were increased above levels found in untreated cells at all three dilutions (1:100, 1:1,000, and 1:10,000) for the fermentation hydrolyzate of ESM (ESM-FH) (P=0.021, P=0.020, P=0.009, respectively) in peripheral blood mononuclear cells. The enzymatic hydrolyzate of ESM (ESM-EH) also produced statistically significant levels of activated NF-κB at the 1:100 and 1:1,000 dilutions (P=0.004, P=0.006, respectively) but fell just shy of significance at the 1:10,000 dilution (P=0.073). Similarly, ESM-FH (P=0.021, P=0.002) and ESM-EH (P=0.007, P=0.007) activated NF-κB in THP-1 cells at 1:1,000 and 1:10,000 dilutions, respectively. The chemical hydrolyzate of ESM (ESM-CH) showed statistically significant levels of activation at the 1:1,000 dilution (P=0.005) but failed to differ from untreated cells at the 1:10,000 dilution (P=0.193) in THP-1 cells. CONCLUSION: Results from our studies provide evidence that ESM hydrolyzates significantly activate NF-κB, and the source of this activity was investigated to confirm that it is inherent to ESM and not derived from bacterial contamination. Based on our findings, we propose a plausible hypothesis as to how increased NF-κB activity might translate into the in vivo efficacy that has been observed with ESM via an "oral tolerance" mechanism.

16.
Bone ; 67: 139-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25007710

RESUMO

Mutations in the GALNT3 gene result in familial tumoral calcinosis, characterized by persistent hyperphosphatemia and ectopic calcific masses in soft tissues. Since calcific masses often recur after surgical removal, a more permanent solution to the problem is required. Nicotinamide is reported to lower serum phosphate by decreasing sodium-dependent phosphate co-transporters in the gut and kidney. However, its effectiveness in tumoral calcinosis remains unknown. In this study, we investigated nicotinamide as a potential therapy for tumoral calcinosis, using a murine model of the disease-Galnt3 knockout mice. Initially, five different doses of nicotinamide were given to normal heterozygous mice intraperitoneally or orally. Treatment had no effect on serum phosphate levels, but serum levels of a phosphaturic hormone, fibroblast growth factor 23 (Fgf23), decreased in a dose-dependent manner. Subsequently, high-dose nicotinamide (40mM) was tested in Galnt3 knockout mice fed a high phosphate diet. The radiographic data pre- and post-treatment showed that nicotinamide did not reverse the calcification. However, the treatment retarded calcification growth after 4weeks, while in the untreated animals, calcifications increased in size. The therapy did not affect serum phosphate levels, but intact Fgf23 decreased in the treated mice. The treated mice also had increased calcium in the heart. In summary, nicotinamide did not alter serum phosphate levels, likely due to compensatory decrease in Fgf23 to counteract the phosphate lowering effect of nicotinamide. Although increased calcium accumulation in the heart is a concern, the therapy appears to slow down the progression of ectopic calcifications.


Assuntos
Calcinose/sangue , Calcinose/tratamento farmacológico , Cálcio/metabolismo , Fatores de Crescimento de Fibroblastos/sangue , Niacinamida/uso terapêutico , Animais , Calcinose/genética , Calcinose/metabolismo , Fator de Crescimento de Fibroblastos 23 , Masculino , Camundongos , N-Acetilgalactosaminiltransferases/genética , Polipeptídeo N-Acetilgalactosaminiltransferase
17.
J Bone Miner Res ; 29(9): 2017-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24692172

RESUMO

Familial tumoral calcinosis is characterized by ectopic calcifications due to persistent hyperphosphatemia. The most common genetic cause of the disease is mutations in GALNT3, encoding a glycosyltransferase involved in a posttranslational modification of fibroblast growth factor 23 (FGF23). The Galnt3 knockout mouse we developed was hyperphosphatemic due to low intact Fgf23 levels, but did not develop any apparent calcifications on a standard rodent diet. We therefore tested the hypothesis that a further challenge with a high phosphate diet could induce ectopic calcifications in Galnt3 knockout mice. Mice were fed either normal (0.6%) or high (1.65%) phosphate diet for 20 weeks beginning from weaning at 3 weeks. The high phosphate diet did not affect serum phosphorus concentration. However, regardless of the dietary phosphate contents, serum phosphorus levels were consistently elevated in Galnt3 knockout mice. The mice on the high phosphate diet had slightly low serum calcium, but significantly high alkaline phosphatase, parathyroid hormone (PTH), and calcium in the kidney. Although none of Galnt3 knockout mice on the normal phosphate diet developed calcifications, calcifications appeared in approximately one-half of the mice on the high phosphate diet by 12 weeks. Calcified masses were most often found around the neck and on the back and as large as 9.9 mm in length. These data indicate that dietary phosphate load has major impact on the development of ectopic calcifications in tumoral calcinosis.


Assuntos
Calcinose/etiologia , Dieta , Fosfatos/efeitos adversos , Animais , Calcinose/sangue , Calcinose/diagnóstico por imagem , Calcinose/urina , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , N-Acetilgalactosaminiltransferases/deficiência , N-Acetilgalactosaminiltransferases/metabolismo , Radiografia , Polipeptídeo N-Acetilgalactosaminiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...